Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses.
نویسندگان
چکیده
Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm(-1)) Raman mode reaches the maximum when incident light polarization is parallel to the armchair direction of the 2D SnS flakes, which strongly suggests that the Ag (190.7 cm(-1)) mode can be used to determine the crystallographic orientation of the 2D SnS. In addition, temperature-dependent Raman characterization confirmed that the 2D SnS flakes have a higher sensitivity to temperature than graphene, MoS2 and black phosphorus. These results are useful for the future studies of the optical and thermal properties of 2D orthorhombic SnS.
منابع مشابه
The Impact of Cadmium Loading In Fe/Alumina Catalysts and Synthesis Temperature on Carbon Nanotubes Growth by Chemical Vapor Deposition Method
We evaluated the effect of Fe/Alumina Catalyst contained different Cadmium contents and two synthesis temperatures on producing carbon nanotubes by chemical vapor deposition of methane as a feedstock. X-ray powder diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and Thermogravimetry analysis (TGA) were u...
متن کاملRecent Advances in Two-Dimensional Materials with Charge Density Waves: Synthesis, Characterization and Applications
Recently, two-dimensional (2D) charge density wave (CDW) materials have attracted extensive interest due to potential applications as high performance functional nanomaterials. As other 2D materials, 2D CDW materials are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into layers of single unit cell thickness. Although bulk CDW materials ha...
متن کاملCarbon Nanotubes Synthesis by Chemical Vapor Deposition of Methane over Zn – Fe Mixed Catalysts Supported on Alumina
Carbon nanotubes were synthesized over a series of Zn-containing Fe/alumina catalysts by chemical vapor deposition method at two reaction temperatures of 850 and 950 °C using methane as a carbon source. Catalysts were synthesized by keeping Fe concentration constant and varying Zn concentration to study the effects of Zn. The catalysts were characterized using X – ray powder diffraction and N2 ...
متن کاملSynthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method
Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...
متن کاملA direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy
MoS2 is a highly interesting material, which exhibits a crossover from an indirect band gap in the bulk crystal to a direct gap for single layers. Here, we perform a direct comparison between large-area MoS2 films grown by chemical vapor deposition (CVD) and MoS2 flakes prepared by mechanical exfoliation from mineral bulk crystal. Raman spectroscopy measurements show differences between the in-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2016